One thing as popular as hydrogen in the universe, is vector. Most mathematical and data analytical analysis asks for this fundamental structure of the world. PCA, ICA, SVM, GMM, t-SNE, neural nets to name a few, all implicitly assume vector representation of data. The power of vector should not be underestimated. The so-called

*distributed representation*, which is rocking the machine learning and cognitive science worlds, is nothing but

**vector representation of thought**(in Geoff Hinton's words, referring to Skip-Thought vectors).

The current love for distributed representation of things (yes, THINGS, as in Internet-of-Things) has gone really far. There is a huge line of work on [X]2vec, where you can substitute [X] by [word], [sentence],[paragraph], [document], [node], [tweet], [edge] and [subgraph]. I won't be surprised to see

**thing2vec**very soon.

But can you really compress structured things like sentences into vectors? I bet you could, given that the vector is long enough. After all, although the space of all possible sentences in a language is theoretically infinite, the majority of language usage is tightly packed, and in practice the sentence space can be mapped into a linear space of thousands of dimensions.

However, compressing a data begs a question of decompressing it, e.g., to generate a target sentence in another language, as in machine translation. Surprisingly, the simplistic

**seq2seq**trick works well in translation. But since the linguistic structures have been lost to vectorization, language generation from vector will be more difficult. A better way is to treat each sentence as a matrix, where each column is a word embedding. This gives rise to the attention scheme in machine translation, which turns out to a huge success, as in the current Google's Neural Machine Translation system.

Indeed, it has been well-recognized that vectors alone are not enough to memorize long-distant events. The idea is to augment vector-based RNN with an external memory, giving rise to the recent Memory-augmented RNNs. The external memory is nothing but a matrix.

**Enter the world of matrices**

Matrices in vector space are used for linear transformation, that is, to map a vector from one space, to another vector in a different space. As a mathematical object, matrices have their own life, just like vectors, e.g., matrix calculus.

In NLP, it has been suggested that noun is a vector and adjective is really a matrix. The idea is cute, because adjective "acts" on noun, which will transform the meaning of the noun.

Matrices also form a basis for parameterization of neural layers. Hence a space of multilayered neural nets is a joint space of matrices.

Our recent paper titled "Matrix-centric neural networks" (co-authored with my PhD student, Kien Do and my boss, Professor Svetha Venkatesh) pushes the line of matrix thinking to the extreme. That is,

**matrices are fist-class citizen**. They are no longer a collection of vectors. The input, hidden layers, and the output are all matrices. The RNNs is now a model of a sequence of input matrices and a sequence of output matrices. The internal memory (as in LSTM) is also a matrix, making it resemble the Memory-augmented RNNs.

To rephrase Geoff Hinton, we want a

**matrix representation of thought**. Somehow, our neocortex looks like a matrix -- it is really a huge thin sheet of grey matter.

May be one day we will live in the space created by matrices.

**References**

- Learning Deep Matrix Representations, Kien Do, Truyen Tran, Svetha Venkatesh.
*arXiv preprint*arXiv: 1703.01454. The updated version (as of August 2017) covers graphs as special case!